Refine Your Search

Topic

Search Results

Standard

Landing Gear Structural Requirements as Listed in the MIL-886X Series of Specifications

2012-05-03
HISTORICAL
AS8860
This specification contains landing gear strength and rigidity requirements, which, in combination with other applicable specifications, define the structural design, analysis, test, and data requirements for fixed wing piloted airplanes. These requirements include, but are not limited to the following: a General Specifications 1 The shock-absorption characteristics and strength of landing-gear units and the strength and rigidity of their control systems and of their carry-through structures.
Standard

Landing Gear Structural Health Monitoring

2012-04-12
HISTORICAL
AIR6168
This SAE Aerospace Information Report (AIR) discusses past and present approaches for monitoring the landing gear structure and shock absorber, methods for transient overload detection, techniques for measuring the forces seen by the landing gear structure, and methods for determining the fatigue state of the landing gear structure. This AIR covers the landing gear structure and shock absorber. It does not include the landing gear systems or landing gear wheels, tires and brakes. Landing gear tire condition and pressure monitoring are detailed in AIR4830 and ARP6137, respectively.
Standard

AIRCRAFT NOSE WHEEL STEERING/CENTERING SYSTEMS

2011-08-10
HISTORICAL
AIR1752
This document covers both military aircraft (land-based and ship-based) and commercial aircraft. It is intended that the document be continually updated as new aircraft and/or new "lessons learned" become available.
Standard

Guide for Installation of Electrical Wire and Cable on Aircraft Landing Gear

2010-12-17
HISTORICAL
AIR4004
Recent field experience has indicated significant problems with some types of wire and cable as routed on aircraft landing gear. This Aerospace Information Report (AIR) is intended to identify environmental concerns the designer must consider, materials that appear to be most suitable for use in these areas, routing, clamping, and other protection techniques that are appropriate in these applications.
Standard

Landing Gear Retraction / Extension Systems

2008-05-14
WIP
ARP5569
This Aerospace Recommended Practice (ARP) will cover normal and emergency landing gear retraction/extension systems. This includes all equipment necessary for the control and sensing of the components used for raising and lowering the gear, up-locking and down-locking the gear, opening and closing the associated landing gear doors, and any latching of this equipment. The document will provide recommended practices for the use of conventional technologies and for those newer technologies now coming into use. It will include the regulatory and other safety requirements for these systems together with recommendations for; sequencing and timing, sensor selection, and failure monitoring of both normal and emergency operation and the support of maintenance and test needs.
Standard

Tests, Impact, Shock Absorber Landing Gear, Aircraft

2007-12-05
HISTORICAL
AS6053
This specification covers definition of landing impact tests which are to be conducted on landing gear assemblies including shock absorbers, suggested instrumentation for the tests and required data of the resulting test report. It is intended to standardize impact test procedures on landing gear shock absorbers and to provide sufficient data to allow evaluation of the design with respect to requirements of MIL-L-8552 and MIL-S-8959 as applicable.
Standard

Arresting Hook Installation, Land Based Aircraft, Emergency

2007-08-09
HISTORICAL
ARP1538A
This document covers the recommended criteria and performance requirements for the design and installation of an aircraft emergency arresting hook intended for use with emergency runway arresting systems. Design criteria for fully operational hooks and for carrier based aircraft hook installations are contained in specification MIL-A-18717.
Standard

Verification of Landing Gear Design Strength

2007-07-09
HISTORICAL
AIR1494A
Verification of landing gear design strength is accomplished by dynamic and static test programs. This is essentially a verification of the analytical procedures used to design the gear. An industry survey was recently conducted to determine just what analysis and testing are currently being applied to landing gear. Timing in relation to first flight of new aircraft was also questioned. Opinions were solicited from designers of the following categories and/or types of aircraft: a Military - Large Land Based (Bomber) b Military - Small Land Based (Fighter) c Military - Carrier Based (Navy) d Military - Helicopter (Large) e Military - Helicopter (Small-attack) f Commercial - Large (Airliner) g Commercial - Small (Business) h USAF (WPAFB) - Recommendations It is the objective of this AIR to present a summary of these responses. It is hoped that this summary will be useful to designers as a guide and/or check list in establishing criteria for landing gear analysis and test.
Standard

Crashworthy Landing Gear Design

2007-07-09
HISTORICAL
AIR4566
The intent of this SAE Aerospace Information Report (AIR) is to document the design requirements and approaches for the crashworthy design of aircraft landing gear. This document covers the field of commercial and military airplanes and helicopters. This summary of crashworthy landing gear design requirements and approaches may be used as a reference for future aircraft.
Standard

Plain Bearing Selection for Landing Gear Applications

2007-03-05
HISTORICAL
AIR1594B
This document is intended to give advisory information for the selection of plain bearings and bearing materials most suitable for aircraft landing gear applications. Information included herein was derived from bearing tests and service experience/reports. Airframe/landing gear manufacturers, commercial airlines, the U.S. Air Force and Naval Air Systems Command provided input for the document. Information is given on bearing installation methods and fits that have given satisfactory performance and service life. Base metal corrosion is a major cause of problems in bearing installations for landing gears. Therefore, methods of corrosion prevention are discussed. Effort is directed toward minimizing maintenance and maximizing life expectancy of landing gear bearings. Lubricated and self-lubricating bearings are also discussed. There are wide ranges of bearing load and motion requirements for applications in aircraft landing gears.
Standard

Plain Bearing Selection for Landing Gear Applications

2006-08-07
HISTORICAL
AIR1594A
This document is intended to give advisory information for the selection of plain bearings and bearing materials most suitable for aircraft landing gear applications. Information is given on bearing installation methods and fits that have given satisfactory performance and service life expectancy. Corrosion is a major cause of problems in bearing installations for landing gears. Therefore, methods of corrosion prevention are outlined. Effort is directed toward minimizing maintenance and maximizing life expectancy of bearing installations. Lubricated and self-lubricating bearings are discussed. There are wide ranges of bearing load and motion requirements for applications in aircraft landing gears. For this reason, it is the responsibility of the designer to select that information which pertains to his particular application. Anti-friction bearings, defined as rolling element bearings generally used in wheel and live axle applications, will not be discussed in this document.
Standard

Extraordinary and Special Purpose Landing Gear Systems

2006-05-19
HISTORICAL
AIR4846
A landing gear system comprises the most compelling assembly of engineering skills. Its importance to the successful design of an aircraft can be favorably compared with that of the aircraft's wings and engines. A landing gear system consists of several different engineering disciplines, and is continually in the public eye especially with regard to safety. The primary objective of AIR4846 is to present a record of a variety of interesting gears, gear/aircraft systems and patents, and to discuss wherever possible the lessons learned, and the reasons for the design. Thus, the document is not only a historical account, but a means of recording technical knowledge for the practical benefit of future landing gear designers. Commendable efforts have been made over the years by several individuals to make such recordings, and AIR4846 will make continual reference to them. This applies to all books, papers, or specifications that have the approval of the SAE A-5 Committee.
Standard

Recommended Actions When Disinfectants, De-icers, and Cleaners Come in Contact with Landing Gear Structure

2006-04-20
HISTORICAL
AIR5541
This SAE Aerospace Information Report (AIR) advises that some of the chemicals being used to disinfect, de-ice, and clean airplanes can cause corrosion and/or degradation of landing gear components. Landing gear equipment includes shock struts, braces, actuators, wheels, brakes, tires, and electrical components. Some of the chemicals that have been recognized as potentially injurious are identified and recommendations for mitigating damage are presented.
Standard

Aircraft Landing Gear

2004-06-24
HISTORICAL
ARP1311B
This SAE Aerospace Recommended Practice (ARP) applies to landing gear structures and mechanisms (excluding wheels, tires, and brakes) for all types and models of civil and military aircraft including all aircraft with vertical landing and crash attenuation requirements. All axles, wheel forks, axle beams, links, arms, mechanical and nitrogen/oil energy absorbers, lock assemblies, braces, trunnion beams, and truck beams etc., that sustain loads originating at the ground, and that are not integral parts of the airframe structure, should be designed in accordance with this document. Hydraulic actuators (retraction, main and nose gear steering, positioning, and/or damping) should also be included in this coverage.
Standard

Design, Development and Test Criteria - Solid State Proximity Switches/Systems for Landing Gear Applications

2001-10-01
HISTORICAL
AIR1810B
This document will examine the more important considerations relative to the utilization of "one piece", or integral electronics proximity switches, and "two piece", or separate sensor and electronics proximity switches, for applications on aircraft landing gear. In general, the recommendations included are applicable for other demanding aircraft sensor installations where the environment is equally severe.
Standard

AIRCRAFT LANDING GEAR

1995-01-01
HISTORICAL
ARP1311A
This SAE Aerospace Recommended Practice (ARP) applies to landing gear structures and mechanisms (excluding wheels, tires, and brakes) for all types and models of civil and military aircraft applications. All axles, wheel forks, axle beams, links, arms, mechanical and air-oil energy absorbers braces, lock assemblies, trunnion beams, etc., that sustain loads originating at the ground, and that are not integral parts of the airframe structure should be designed in accordance with this document. Hydraulic actuators (retraction, steering, positioning, and/or damping) should also be included in this coverage. It should be the responsibility of the airframe manufacturer to determine the compatibility of these needs with the aircraft and to specify requirements in excess of these minima where appropriate.
Standard

PLAIN BEARING SELECTION FOR LANDING GEAR APPLICATIONS

1993-03-01
HISTORICAL
AIR1594
This document is intended to give advisory information for the selection of plain bearings and bearing materials most suitable for aircraft landing gear applications. Information is given on bearing installation methods and fits that have given satisfactory performance and service life expectancy. Corrosion is a major cause of problems in bearing installations for landing gears. Therefore, methods of corrosion prevention are outlined. Effort is directed toward minimizing maintenance and maximizing life expectancy of bearing installations. Lubricated and self-lubricating bearings are discussed. There are wide ranges of bearing load and motion requirements for applications in aircraft landing gears. For this reason, it is the responsibility of the designer to select that information which pertains to his particular application. Anti-friction bearings, defined as rolling element bearings generally used in wheel and live axle applications, will not be discussed in this document.
Standard

TAIL BUMPERS FOR PILOTED AIRCRAFT

1991-06-11
HISTORICAL
ARP1107A
This recommended practice covers the fixed structure, or independent energy absorbing system affixed to the airframe to afford protection to the control surfaces, engine and other portions during ground handling, take-off and landing.
X